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1. INTRODUCTION The optical receiver and control unit (left-hand
cabinet of fig. 1) receives the optical signals and

The optical signal link described here is based converts them to an electrical signal available at the
on an earlier, less adaptable system.' It was built to receiver output, which is typically connected di-
answer the need for a versatile EMP-resistant rectly to an oscilloscope. The controls allow the
conduit that could convey the signals from sensors user to turn the system on and off, insert an
to a remote location without noise pickup. In attenuation between 0 and 45 dB at the input, and
addition to having no noise pickup itself, the fiber- turn the internal 10-mV calibrator on and off. A
optic link also insures that no noise is conveyed logical "handshake" confirms proper reception of
into the system under test (as might occur with the attenuation commands. All signals are con-
conducting lines). The optical cable may be less veyed between the receiver/control unit and trans-
than 1 mm in diameter where necessary and mitter/remote unit via optical fibers.
consequently can pass through an opening so small
that it provides no significant compromise in The two spools each contain 100 m of optical
shielding, even at the highest EMP frequencies. cable: one is used to transmit the signal from
The system also typically provides a wider band- transmitter to receiver and the other to carry
width than is possible with tractable conducting controlling commands in both directions between
cables. The fiber-optic cable is wideband, mechan- transmitter and control unit. A single cable con-
ically durable, flexible, and resistant to moisture. taining two fibers, one for each function, could
The transmitter and fiber optics were tested in equally well have been used. Such a twin-fiber
electric fields as high as several hundred kilo- cable would reduce total cable weight to only about
volts/meter, and no significant noise was picked up 3-kg for the 100-m distance.
even though signals as low as 1 mV were being
transmitted. A number of these systems have been
in use since late 1977, often under field conditions, 2. TRANSMI'TER-BLOCK DIAGRAM
with no significant failures or instabilities except AND DESCRIPTION
for some early failures caused by a defective lot of
signal light-emitting diodes (LED's). The electronic circuitry of the transmitter/re-

mote unit is summarized by figure 2, and an
The optical tansmitter is the cylindrical struc- internal view of the transmitter is shown in figure 3.

ture on the right of figure 1 (p 6). It accepts the Proceeding from the optical output back towards
sensor signals (in the range from millivolts to volts) the electrical input, the low-impedance LED is
at its 50-ohm input and converts them to optical driven by a single transistcr stage which provides
signals which are carried to the receiver by an operating bias, modulation current, and some
optical fiber (or fiber bundle). Additional circuitry high-frequency pre-emphasis. This stage is driven
in the transmitter decodes and executes the various by a linear 50-ohm amplifier which provides
commands sent by the front-panel controls of the voltage gain. The input of this stage may be
receiver/control unit. The lower half of the trans- connected by remote control either to the input
mitter is a plug-in battery pack which provides attenuator or to the calibration generator. The
more than 12 hours of continuous use. In the input attenuator uses four TO-5-can elays to
application for which this system was built, space insert or remove 3-, 6-, 12-, and 24-dB attenuation
was liberally available and thus no attempt was elements in response to the commands from the
made at miniaturization. Were it necessary, the control unit.
volume of the transmitter could be reduced to one-
third the size of the present unit; only assembly The remote-control link consists of an LED
convenience and battery running time would be which is used both as a light-emitting element
compromised. when forward biased and as a photovoltaic detector

1J. Hioekburn. 4 120-AMH B.d,,didah Lu , neI ,,,,,ona u.i, n .e,, when zero biased and operated into a high load
aing hbr f(*tis, IE ram... Instus. Mess. IM 24 3 sfopmbe 197). " impedance. In the control sequence the detector
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Figure 1. Fiber-optic signal link. Control unit on left, transmitter and cable on right.
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Figure 3. Internal view of transmitter and battery pack.

first receives the pulse-modulated optical corn- In principle, one could apply an automatic gain
mands incoming on the control fiber and then (by control (AGC) loop to the receiver and automati-
time multiplexing) later sends out optical signals to cally remove most of this variation. Since one
verify proper reception of the attenuation com- would still need a calibration generator to verify
mand. this operation, the AGC loop has been left out and

calibration has been made completely straight-
forward.

Since the attenuator is a stable and accurate
device using precision resistors, and since its
proper setting is verified by the control link, it is 3. RECEIVER AND CONTROL UNIT-
necessary only to verify the system gain between BLOCK DIAGRAM AND
the input of the wideband amplifier and the output DESCRIPTION
of the receiver in order to know the total system
gain from signal input to receiver output. This is
accomplished by the calibration generator which, The electronic system of the optical receiver/con-
upon command, applies a +10, 0, -10 mV three- trol unit is depicted in figure 4. The commands
state calibration pulse sequence to the input of the (system on-off, attenuation, calibrator on-off) are
30-dB amplifier, set by the operator on the front panel switches.

These commands are coded by the electronics, and
the coded signal is applied to the electro-optical

Such a calibration is essential since the attenua- transducer, which emits a light pulse sequence into
tion of the optical fiber, and to a lesser extent the the control optical fiber. After an interval of some
gains of the LED and detector, may change by a milliseconds, during which the remote unit ex-
decibel or two during a day. The attenuation of the ecutes the commands, the optical transducer goes
optical fiber also may change by a few decibels into the receive mode and the verification signal
when the optical connectors are disconnected and from the remote unit is received, decoded, and
reconnected, or when the fiber cable is spooled and displayed. Proper attenuation command reception
re-layed, etc.. in moving from one test situation is verified if an LED indicator lights under each
to another. "on" attenuator control switch.

7
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Figure 4. Block diagram of optical receiver and control system.

The attenuation command to the remote unit is 4. OPTICAL FIBER

sent only once, immediately after the remote unit is CONSIDERATIONS

commanded to turn on; after this attenuation
command has been received, the remote unit locks
and will not accept any further attenuation com-
mands until after it has been turned off, and then Fiber optics can be supplied in a variety of
on again. This prevents any possibility of unex- physical configurations which meet almost any
pected attenuation changes due to noise pickup, handling and environmental situation while pro-
loose optical control cables, etc. The calibrator, viding the advantages of optical communication. A
and of course power. may be turned on and off at fiber with a single-layer coating of plastic is suit-
any time. able for light duty use, and typically has an outside

diameter of less than 1 mam. With additional layers
The design of the signal receiver is very straight- of nonconducting plastic coverings, a fiber cable

forward, consisting of an avalanche photodetector, smaller than RG-58, and much lighter in weight.
(APD, dtecor iassuppy, nd ideandac- can withstand a tension of hundreds of Newtons

coupled amplifier. The bias supply is temperature analoftadveietrfc.Mscbeswl
compensated to nullify detector gain changes in operate over a temperature range of-30 to +60°C

resons toenvronentl tmpeatue cangs, and are unaffected by moisture. A much wider
respnseto nvirnmetaltemeratre hanes. temperature range is attainable with special cover-

ings. Multi-fiber cables, providing a number of
A signal-level meter indicates the detector dc isolated signal channels, are not much larger than

current (and, therefore, optical carrier level). A single-fiber units since the fibers themselves are
limited-range detector bias control allows the oper- insignificant in size and share the more bulky
ator to make fine signal-level adjustments. mechanical protective coatings.

8
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Connectors can be used to join various fiber The choice of fiber to be used in a given
configurations so that, for instance, a very durable application depends on the signal frequency and
multi-fiber cable of the size of ordinary coaxial transmission distance.' For the system described,
cable can be run from instrumentation to a remote the logic rate of the control link is so low that fiber
point, with each of the fibers joined to an individual dispersion is of no consequence; plastic clad silica
strand of submillimeter diameter fiber, and each of (PCS) fiber is suitable. The large numerical aper-
these tiny fibers runs into a test object through a ture and core diameter of this fiber allows excellent
small opening which does not compromise the optical coupling. The signal fiber, because of its
electrical shielding or mechanical properties of the >100 MHz bandwidth, must be chosen with
test object. attention to dispersion. For distances up to several

tens of meters, PCS fiber is suitable; for distances
In addition to the obvious advantages of light up to t00 mn or so, step-index glass is the best

weight, small size, and immunity to electric fields choice: it provides a lesser optical coupling than
and noise, fiber optics also has the advantage of PCS, but has a much reduced dispersion. For long
very great bandwidth compared to coaxial cables. distances, dispersion considerations dominate all
A modest-performance optical fiber has a band- others and graded index fibers are required, even
width of 20 MHz (flat within 3 dB) over a 1-km though they have the least numerical aperture and
distance, with a loss of perhaps 15 dB. To this, core diameter of the three types. The reduced
compare the RG-58, which has a loss of about optical coupling available with the graded fiber will
55 dB/km at 20 MHz and a loss of over 10 dB at produce the least signal-to-noise ratio in the re-
1 MHz. A 1-km length of high-perforniance fiber ceived optical signal. but transmission over more
may have a response flat within 3 dB from dc to than a kilometer is feasible.
over I GHz with a total loss of 5 dB.

All types of fibers can be supplied with the full
At present, satisfactory connectors are available range of coverings to provide the required physical

for all types of optical fibers (this was not true as properties.
recently as a year or so ago). As might be expected,
the smaller the fiber diameter, the more precise the
connector must be. Molded plastic connectors 5. RECEIVER CIRCUITRY
suffice for a wide variety of modest-performance
fibers; precision metal connectors are usually
required with high-performance (and consequently 5.1 Detector and Voltage Control
small-diameter) fibers. The unique connector
manufactured by Deutsch Company seems at
present to be the most satisfactory for the widely The C30884 APD (see fig. 5) requires a rather
used 63-mm fibers. closely controlled reverse bias voltage between

about 270 and 340 V, depending on the individual

For permanent splices between fibers, a fiber- unit. Further, if the gain of the APD is to be
to-fiber welding technique is available which constant, this voltage must he increased as the
allows low-loss permanent connections without the detector's temperature increases. An AD580 volt-
use of connector hardware. age reference, a thermistor, and a CA3 130 optical

amplifier combine with Q20 to provide the neces-
Optical time-domain reflectometer (TDR) sary adjustment, regulation, and compensation

equipment is also now available for use in locating functions.
fiber breaks. The optical TDR sends a short, fast-
rise pulse of light down the fiber and then views the The +400 V supply passes through RI10 and is
fiber with a sensitive detector, indicating the time dropped to the required voltage by the current
and amplitude history of the reflected light on ai
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through Q20 (and the current through the APD). The proper detector current is around 200 p.L.
The voltage is fed back through R 1I and compared An excessive detector voltage will cause the APD to
with the AD580 reference. The result of the con- draw large self-avalanche currents and injure itself.parison is amplified by the CA3130 and drives the Such self-avalanche is accompanied by consider-
TIS 100, thus completing the loop. able noise, readily visible if the receiver output is

displayed on a wideband oscilloscope.
The lAl I thermistor provides temperature

compensation. As the temperature rises, the 5.2 Amplifiers
thermistor decreases in resistance and more cur-
rent flows from the node where R6, R7, and R8 The output of the APD is amplified by three
meet to ground. This causes a voltage increase GPD-type* amplifier modules to an output of
across Q20; consequently, more current flows several hundred millivolts (at maximum signal).
through R II into the node. R8 adjusts the rate The GPD units are hybrid circuits containing a
of this compensation to about 2 V/C as required signal transistor and the necessary matching and
by the detector. biasing components. Each stage has a gain of about

13 d1.
The relay RY4 is used to turn the +400 V

supply off if the + 15 V supply drops to a value too Although this type of amplifier, with its low
low to enable the AD580 and the CA3130 to input impedance (about 40 ohms) is not generally
operate. Without RY4, if the +15 V supply were the optimal choice for use with a current source
removed, Q20 would not be driven and the detec- such as the APD, in this application the optical
tor voltage would soar to a value which could
damage the detector. .%71) i. p desRnn.,,,,, , 4-.m,.k. In- .,. - 4
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signal level is high enough so that amplifier noise is LED. The trimmer capacitors and resistor, R6, are
not of critical importance. When analyzing noise adjusted to provide the best pulse shape response
performance of an analog AM-modulated system for the link.
using an APD, one must bear in mind that a weak
signal (low-modulation index) produces the situ- Calibrator. - When RY2 is energized (by Q2
ation of a small signal variation superimposed on a of the remote unit logic), the transmitter input is
high background level; detector excess noise may transferred from the signal to the calibrator. The
be considerable.3  waveform generator consists of two monostable

Examination of the noise output from the re- amplifiers (Q16, 17 and Q18, 19) driven by the

ceiver shows that it contains a significant number 10-kHz waveform from IC4F (on the logic board).

of narrow (- 1 ns) spikes, occurring at a random IC4F triggers Q 19, which triggers Q 18, causing the
rate. Since these spikes are very narrow and occur collector of Q18 to go negative for the desired

period. This constitutes half of the calibrator
at a relatively low average rate, they may not be waveform. When the collector of Q18 returns, this
visible on even a wideband scope if it does not have is coupled by the 15-pF capacitor to Q17. The
a high writing rate. These spikes can provide false collector of Q16 now goes positive for a period,
triggering if one is attempting to observe a weak producing the positive half of the waveform. R5
receiver signal output on an internally triggered sets the waveform level and R4 adjusts the sym-

ssetsethefwaveformelevelsandal4iadjustsatheasym
scope. If the received signal is of reasonable metry (for equal positive and negative excursions).
strength, this is not likely to be a problem. One Time symmetry does not have a convenient control
should normally choose the transmitter's front-end but could be adjusted by a change in the value of
attenuation so as to provide a strong signal at the the 56-pF capacitors associated with Q16, 17 and
receiver. Q18, 19. The waveform thus produced goes first

negative, then positive, and then back to zero.

6. SIGNAL TRANSMITTER CIRCUITS Since the system inverts all signals, this appears at
the receiver output as the desired (positive-first)
waveform.

The transmitter system (fig. 6) consists of three
subdivisions: the front-end attenuator and its logic
(described in sect. 7), the waveform generator
(calibrator) (Q16 to Q19), and the transmitter 7- CONTROL UNIT LOGIC
itself, which consists of two GPD stages, the driver
Q20, and the C30133 LED, A description of the When the on-off switch of the control unit (fi,
calibrator and transmitter follows. 7) is energized, section I of U14 immediately emits

a low on its Q output. This low (1) causes U13 to
Transmitter. - The transmitter consists of load the data selected by the front-panel attenua-

two GPD stages having a total gain of 26 dB and the tion switches and applied to the inputs A through
common emitter driver, Q20, which has the LED D, (2) disables U 12, section 1, by forcing the clear
as the collector load. For transmission of sub- and B inputs low, and (3) clears U 11. section 2.
millivolt signals, an additional GPD amplifier stage
may be added to provide 40 dB of gain. Since the
LED has a low dynamic impeda..ce, there is very As a result of the clear applied to U 11. section 2.

little Miller effect degradation in the final stage. R3 Q 15 is turned on. The clear applied to U 12, section

sets the no-signal bias, typically 30 to 50 mA. This 1, prevents it from triggering U 12. section 2: thus.

value must be individually adjusted to provide the the 2Q output is low: this low state turns Q14 on.

maximum undistorted modulation swing for the Since both Q14 and QI5 are on, the LEI) D8 is
_ _ _illuminated and this illumination is conveyed to

3
1
1L , d F X n,., s,,nd o ,, nd , . H,, v.*, the remote unit by a fiber-optic cable. This in turn.

1-1-Amm IM~ , 11hotodiwd-. IK'.EE r.... El-mrm I~rc,bD-,- .
I vme,,. V9. energizes the remote unit.] "A..q'
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Figure 6. Signal transmitter circuit schematic.

When U14, section 1Q goes high it (1) enables Ull, section 2 (which is triggered by the
Ul 1, section 2, (2) removes the load signal from oscillator of Ul 1, section 1), having been enabled
U13, and (3) allows U12, section 1, to operate. by U 14, section 1, periodically emits a high on its Q
Section 1 of U 12 is an oscillator driving U 12, output. The leading edge of this high causes U14,
section 2; thus, a series of pulses is produced at the section 2, to emit a short pulse which clears counter
U12, section 2, Q output. This is a square wave of U10. During the entire duration of the high, Q15 is
about 500 Hz. This square wave both drives LED turned off, thus removing the drive from D8 and
D8 (through Q14) and counts U13 down. When allowing it to serve as a photodetector. The inter-
U13 is counted down to zero, the borrow input goes ruption of the light from D8 causes the remote unit
low, thus disabling U 12, section 2, and terminating to go into its interrogate cycle (as described in sect.
the 500-Hz square wave. Meanwhile, the remote 8). When the remote unit replies (via flashes from
unit (fig. 8) has used detector D7, etc., to count the LED D7), detector D8 and comparator U 15 detect
flashes of LED D8. the flashes and feed the signal through shaper U9

into counter U10. The count of U10 is displayed

LED D9 begins in the "on" state and ends up in via the LEDs on the front panel.
the "on" state, having made a brief series of "off" The interrogate cycle can be defeated by a front
excursions. Its duty cycle is such that it is "on" panel switch which prevents U 11, section 2, from
most of the time. becoming triggered.

12
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8. REMOTE-UNIT CONTROL LOGIC (Pin 16). This is a logical 1, which causes the zeros
at the jam inputs to be loaded into the counter.

8.1 Input/Output Circuit Capacitor TI now charges to the negative supply
through the 1.8 Mohm resistor until the preset

The TIL-31 LED (D7 of fig. 8) acts both as a enable is at logical zero. The counter is now ready
photodetector and as a photoemitter.This elimin- to receive and count pulses.
ates cable alignment difficulties which resultfrom coupling light between a fiber-optic cable and The controller, having waited an appropriate
from cupysingaligt eteen aero-optic cm -a time after turn-on, now sends out a series of pulsestwo physically separated electro-optic compo- in the form of brief interruptions in the output of
nents. The LED as a photodetector can easily D8. Thes nerpin flgtotu r o re
provide several hundred millivolts of usable signal . ese interruptions of light output are too briefwhenopertedintoa hih ipedaceto open RYL (because of the time constant in the
when operated into a high impedance. base of Qi), but are fed into IC2 Pin 15 and

When the unit is receiving commands (sent counted. The pulse count is taken from the outputs
from the controller via the fiber-optic cable), the of IC2, amplified by drivers Q4 through Q7, and
photodetector output is compared by IC1 to the closes appropriate relays in the attenuator.
reference level set by R 1. After about 300 ms, the output of IC4B (which is

When the remote unit is sending the attenuator controlled by time constant TI) goes high and
verification pulses back to the controller diode, D7 counter IC2 is inhibited from receiving further
serves as an emitter, driven by Q3. During send- counts. At the same time clamping diode )5 is
back, D7 is of course "blind," but at this time there reverse-biased.
is no requirement for receiving signals. Since the attenuation loading is complete, the

8.2 Turn OnOff remote unit is now ready to be interrogated by the
controller.

The input detector (D7) and the comparator
(IC1) are always powered. When the controller is
turned on, the light from LED D8 (fig. 7) is coupled 8.4 Interrogation/Calibration
via the control fiber-optic cable into D7. The light is
sensed and the comparator output changes state. When the operator commands the control unit
This charges the I0-luFcapacitor and as the voltage to interrogate (by flipping the front-panel switch),
rises the 2N3906 emitter follower (Q]) turns the the current drive is removed from D8 (by the
relay (RY 1) on. The relay in turn supplies power to turning off of Q 15) and thus D8 is enabled to act as
the rest of the unit. a photodetector. The remote unit's D7 senses the

absence of light, and the output of ICI switches.
When the controller is turned off, the 10-jtF This begins the charge of capacitor C2 at the input

capacitor decays through the 330-kohm resistor, of IC4C. After approximately 30 ms. IC4C
thereby turning the unit off. This turn-off delay is switches. (This 30-ms delay is required to allow the
sufficiently long to keep the unit from turning off carriers in the controller LED. which had been on.
during interrogate commands. to decay, allowing what was once an LED to now

function as a photodetector). When IC4C switches.
8.3 Loading of Attenuation Command the output is differentiated and the resultant pulse

applied through IC4D to IC3 Pin I (preset). This
When RYI initially closes at turn-on, the appli- loads IC3 with the output of IC2 (i.e., the actual

cation of the negative supply determines the start attenuator setting at this time). Loading IC3 with a
of many of the timing signals. For example, at the nonzero count causes the carryout (Pin 7) line of
preset enable of IC2 (Pin 1) the voltage across the 1C3 to go high. This reverse-biases clamp ditdc )
capacitor, Cl. is 0 V relative to the VDD supply and enabhls IC4A. which now oscillates at a

15
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frequency of 500 Hz. The output of IC4A pulses and test channels when the test channel contains a
D7 (via driver Q3) and also pulses the clock input delay as great as the 3-m optical cable. In any
(Pin 1) of IC3. When IC3 has been clocked down to event, phase distortion is reasonable, since square
zero by the pulses the carryout (Pin 7) goes low, pulses are transmitted with only modest ripple.
forward biasing diode D6 and turning the oscillator Low-frequency square waves show a tilt due to the
off. Meanwhile, the light flashes produced by D7 low-frequency 3-dB point of about 5 kHz.
have been received by D8, counted by U10, and
displayed on the front-panel LEDs of the controller. The dynamic range of the system is limited at
After the controller has received these pulses, it the upper end by the level at which distortion in the
turns its LED back on. If it did not turn back on, the transmitter becomes excessive and at the lower end
remote unit would turn itself off after the expiration by the level at which the signal modulation is
of the time constant set by T2. obscured by noise; the low end is therefore to a

The remote unit is unable to respond to further great extent determined by the amount of optical

interrogations until a time delay set by T4 has signal that reaches the detector. This signal level, in

passed. This prevents the remote unit from inter- turn, is dependent on the optical losses between the

preting its own light pulses as requests for inter- LED and detector. Over modest distances (up to

rogation and thus running continuously.

The interrogate command also causes the re-
mote unit to send its calibrate signal. The output of
IC4C is coupled to IC4E, which turns on for a
period determined by time constant T4 (approx-
imately 2s). The output of IC4E turns transistor
Q2 on. This in turn closes the relay RY2 on the
fiber-optic transmitter board, shifting the trans-
mitter's signal input from external inputs to the
calibrator. The repetition rate of the calibrator is
determined by oscillator IC4F. The nominal fre-
quency of the calibrator is 10 kHz, which can be
trimmed by adjusting the value of the 200-kohm
resistor. The time constant T4 is longer than the
repetition rate of the controller interrogate; as a
result, the calibration relay is continuously closed
and the oscillator runs continuously for as long as
the controller is in the interrogate mode.

9. SYSTEM PERFORMANCE

The amplitude and phase response of the sys-
tern is shown in figure 9. These plots were obtained
by feeding the test signal from the analyser into the
transmitter, connecting the transmitter to the re-
ceiver with a 3-m long optical fiber, and feeding the
optical receiver output into the analyser test chan-
nel. Although the amplitude data are correct, there
is some doubt about the accuracy of the phase Figure 9. Phase and amplitude plots: upper,
information because of the problem of providing 0.1 to 11 MHz; lower, I to 110 MHz. Phase.
equal propagation time delay between reference 10 deg/ division; amplitude, I dB/division.
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50 m or so), a high numerical aperture fiber with a incorporating a single-mode laser and highly mini-
large optical transfer coefficient can be used, and aturized attenuator, has now been essentially corn-
the dynamic range should be nearly 40 dB. At pleted by the authors. This system has a band-
greater distances, the dispersion of the high width of 500 MHz, and a dynamic range of 35 to
numerical aperture fiber will be excessive, and the 40 dB; it will be contained in a volume of about
required small-core fibers will give a smaller 35 cubic inches. All the control features of the
optical transfer and, consequently, a dynamic original system have been retained.
range near 30 dB.

Lest one completely despair that the LED system
become outmoded, it should be pointed out that the

10. FUTURE PLANS AND cost of LEDs is much less than that of lasers and
SUGGESTIONS that their lifetimes and temperature stability are

superior. Also, the very narrow spectral output of
Although the described instrument, made single-mode lasers has produced some knotty

originally in 1977. has worked very successfully optical fiber problems not experienced with LED
and provided much measurement data which emitters; interference effects within fibers and at
would probably have been prohibitively difficult to the connector can produce model noise.'
obtain with more unwieldy dielectric transmission
systems (and totally unobtainable with hard-wire) A number of experimenters' have used pre-
it is, in a sense, obsolete at this time. At present, distortion and feed-forward or feed-backward
laser diodes have been developed to the point schemes to linearize LED systems. producing
where their linearity is at least as good as that of an second and higher harmonics down 60 or more dB.
LED, and their lifetimes and stability are certainly At present this work has concentrated at video
adequate for laboratory instrumentation. With bandwidths, but the possibility of applying it to
threshold currents now as low as about 35 mA, and wideband instrumentation links is certainly at-
very high dynamic sensitivity, a laser can be tractive,
substituted for the LED with very little circuit _________

change, and the resulting system will offer several H. k k .- , ............ .. i~ .,,~.. ,,,, *

times the bandwidth of the LED system together IP''" ( f' M,, h V,
.... ,a . zfi...... . ... ........

with better dynamic range. Such a signal link, i a ~ u,,,,,~',. h', vR
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